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THE ANSCOMBE-WOODROOFE METHOD IN RENEWAL THEORY

Steven Paul Lalley, Ph.D.
Stanford University, 1980

A probabilistic device developed by Anscombe and Woodroofe is

used to obtain a local limit theorem for a class of hitting times

associated with transient one-dimensional random walks. Applications

of this local limit theorem to ruin problems and to nonlinear renewal

theory are given.
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TEASCOBE-WOODROOFE METHOD IN RENEWAL THEORY

Many random walk problems (particularly those arising in

sequential statistical analysis) call for precise information concern-

ing both the hitting time and the hitting place of a half-line. If

{Sn )is a random walk with positive drift V and finite variance a 2 ,

and if T - min{n : S >a), then it is well-known that S -a has aa nT
a

limiting distribution as a that (Ta -a - l )P 3 / 2 0 - a - I/2 has

approximately a standard normal distribution as a - -, and that the

two variables in question are asymptotically independent. Sometimes,

however, stricter limiting statements are necessary: for example, a

local limit theorem in T
a

Such a theorem was obtained by A. Borovkov ([3 1) under the

assumption that the underlying distribution of the increments in the

random walk be strongly nonlattice and have a finite two-sided Laplace

transform. Borovkov's proof relies heavily on the complex-variable

machinery related to the Wiener-Hopf method for solving integral

equations. Unfortunately, the asymptotic representation for the hit-

ting probabilities is not very explicit (it is not even apparent from
_a-l a-1/2

Borovkov's theorem, for example, that (Cr -alla )a has a limiting

normal law).

A rather different approach to limit theorems for hitting

times was discovered by F. J. Anscombe ([ 1]) in his study of sequen-

tial estimation procedures, and has recently been exploited by

M. Woodroofe ([14], [15], [161) in s variety of contexts, all of them

. 1



involving the crossing of curved boundaries. The essence of this

method is a conditioned limit theorem for the random walk, which in

turn is derived from a local limit theorem for the density of S n

The conditioned limit theorem is then used to obtain unconditional

renewal-type theorems, large deviation probabilities for various hit-

ting times, or results concerning the moments of hitting times.

In the theorems to follow the method of Anscombe and

Woodroofe will be adapted to local limit problems for hitting times.

The usefulness of these local limit theorems will be illustrated in a

very simple derivation of a large deviation theorem generalizing

Cramtr's ruin estimates. (To the best of my knowledge no such large

deviation theorem has previously appeared in the literature.) In

contrast to Woodroofe's work, no absolute continuity conditions will

be imposed on the random walk: the only condition needed for the

validity of the theorems is a finite second moment.

Local limit theorems for hitting times are also valid for a

class of "perturbed" renewal processes. Such processes, introduced

by Lai and Siegmund [ 7 3, are especially pertinent to sequential sta-

tistical analysis.
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1. A Renewal Theorem Local in Time

Suppose that F is a nonlattice probability distribution with

mean ji > 0 and variance a~ < a. (NOTE: An "arithmetic" distribution

is a distribution whose support is contained in a discrete subgroup

of IR; a "lattice" distribution has support contained in a coset of a

discrete subgroup.) Let X1,X2, be iid from F, and

S n -X. + ... + X.

STONE'S THEOREM (Stone [131): As n+

(1) En SUP1 : 1 1<1 suPxc R

& ICK

InlP{S -npiei+x1 -i ,(x/n'~)
n

Here the supremum is taken over all finite intervals ICK of length

I1I <1 where K is a compact subset of R ; and 0 (x) W (2wa2)

e-x2 /2(7

Let On - max En' k afixed integer, I a fixed finite
m>n

interval, and {a n Ia sequence of real numbers. Define

(2) F n,k,I (dxo,...,dxk) - P(X n dxo,...,X nk dxkISn ca n+I}

THEOREM 1: If

(3) lim 8nk 111 1 expf(a n -nlz) /2n7)

then



(4) Fn,k, F(dx 0  F (dx k) .

Furthermore, the convergence in (4) is uniform on any set

J - {({a),I)I of pairs such that 4{an},I)e J I is a bounded subsetnH
of MR, and such that the convergence in (3) is uniform over J.

PROOF: Since

Fnk,I(dx0 ... ,dx k )

kF(dx 0 ) .'. F(dxk)P{Sn-k-I ean c n n +

the theorem is an immediate consequence of Stone's Theorem. /f

This is the key to establishing the following renewal theorem.

Recall that

A min{n:S >a}
a n

THEORE2 2: Let

(8) n 0  nO(u,a) - aJ- 1 + uCIO- 31 2 a1/ 2 + o(a 1 /2)

then

(9) P{Ta n0} 0 e-u 2/2 G-1 p3/2 (2a)-1/2

and

(10) P{(a = n0 ; ST -a<x)
a

~ 2 /2a-1 3/2 1/2 fx PS >ydy/ES
e Ij (2-a) 0 T > T

4
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as a 4 . These relations are valid uniformly for x bounded away

1/2
from zero and u in any compact subset of IR, provided the o(a / )

term in the definition of no is uniform

PROOF: Fix uCIR and x (0,-); let rCIN be a large but fixed

number, and let I- ((j-1)x/r, jx/r], j-1,...,r. Then

(11) P a -n; S -a<x)a 0

r
Z P{S n£a+I j}P{T a -nJ s n Ea+I j

It is quite obvious that

(12) 1 - PFS -Sn <jx/r, some Z, <t<n 0 a+I

Pn n SZ ea+ I}

a n 0

< l-P{S -Sno <(j-l)x/r, some Z, 1<t <non Ia+ }

In Lemma 2 to follow it will be shown that for each E > 0

there is a k large enough that
1

(13) lim sup max
a-"eo

So-Sn . <x, some Jt, no-k l <t<noISn oa+I I < E
n - 0 0n 0

Moreover, by the Strong Law there is a k2 large enough that

(14) PSn <x, some n>k 21 < E

Let k - max(kl,k 2 ). Since Theorem 1 implies

5
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(15) P{S -S0 <a, some Z, I< k < kIS n a+I }
non no :

SP{S, : O, some < k < k)

for each a c (0,0), it follows that

r
(16) Z P{S nca+I [S,<j x/r, some 2}-2E]

< PTa-no S -Pa<x} x s

r
< E PfS ea+I }[I-P{S <(J -1)x/r, some £}+2E]

j-i n 0

Relation (10) follows easily from this inequality. Stone's Theorem

allows that

-u 2/2 1- 1/2 12a-/2.(xr ;
(17) P{Sn ca+I I ~ e /2 1 / (2Ta) (x/r)

Lemma 1 to follow states that for all a > 0

1 - P{S < a, some > li} - P{ST > alp/EST

and E > 0 is arbitrary. Thus for large r, the two extreme sides of

the inequality (16) both approximate the expression on the right hand

side of (10).

Let K1 be a compact set of mR and K2 a compact set of (0,-).

To establish that the relation (10) is valid uniformly over u cK, and

x cK 2, it is enough to show that there is uniformity in (13), (14),

(15), and (17). Uniformity in these relations follows immediately

6



from the statements of Lemma 2, the Strong Law, Theorem 1, and

Stone's Theorem, respectively.

To complete the proof of the theorem it suffices to demon-

strate that (9) holds uniformly for u in compact sets, for it will

automatically follow from this and what we have already proved about

(10) that (10) is valid uniformly for x bounded away from zero. In

the proof of (9) we will appeal to the fact that (10) holds uniformly

for x bounded away from zero and infinity.

Choose E > 0 small, and let A > 0 be large enough that

Co

E (l-F(A+J)] < E
j=O

By Stone's Theorem there is a constant C > 0 such that for each

interval I of length 1 and all a,

P{Sn0_l c I} < Ca-

Now

P{ a = n 0 ; S -a>A }

fo P{X >A+z)P{S £a- dz}-0 n 0  n,)71

< E (1-F(A+J)I]Ca
J=0

< ECa

We have already shown that

7



Pt -n; Sx -a <A) - eu 2/2 a -l 13/2(27ra) - 1/2 •A P{St >ydy/ESa 0 -- 0 I

0 0~ 0ydy

since E > 0 is arbitrary, (9) holds. This completes the proof. /

LEMMA 1: For any random walk with mean p > 0, and for each a > 0,

(18) 1 - P{n <a for some n>l = P{S 0>a}p/EST

PROOF: This is an exercise in the use of the "Duality Principle!' for

random walks (cf. Feller [5 ], Chapter XII). Let

t = inffn > : S < 01

Then

1 - P{S <a, some n>l}

fk>0 Sk >a-y}F(dy)
(a,-)

Go

= f E P{ min Sj =Sk>a - y }P{t =l }F(dy)
(a, -) k- 0,J <k

f E P[t 0O>k; Sk>a-y}F(dy)P{t=c}

(a,-) k-0

= PS >a}P t =
0

= P T0 >a/Et0

P >a}lso 111
T 0T0

8
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LEMA 2: Let K1 be a compact set of IR and K2 a compact set of (0,-).

Then under the conditions of Theorem 2,

(19) inf liam sup sup sup max
k>O a-0- u K1 xeK 2 l_)S<r

P{Sno S 9no. < x, some Z, n0 -k<9.<n 0 I a+I } - 0 .

PROOF: "Looking backwards" along sample paths one sees that

P n0- S n Z<x, some Z., n 0 --k <1< nISn 0Ca+I~

< P{S,<Sx, some 9,, k<k<n

00•P{S noca+Ijl s I<x , some Z, k<R,<n 0}/P{Sno: a +l I

By Stone's Theorem and the definitions of n0 and Ii.

sup sup max [I/P{S c a+}] 0(a)
uCK1 xeK2 1<j<r no

By the Strong Law,

inf sup PfS <x, some k) 1= 0

k>O xeK2

Thus to prove (19) it suffices to show that

(20) sup sup sup max P{S ca+I 159 -yI - 0(a 1

ueK 1 xeK 2 y<x O<<n 0  na0

Relation (20) follows from Chebyshev's Inequality and Stone's

Theorem, quite painlessly. For n 0 > 9 > a1 /4 + 1/2 log a,



P{Sn Ea +I ISit y }

< P{Snok >a -y}

S(no - 1) 2/[-y + 2,p- uor j- a + o(a )]

- o(a
- )

uniformly for u K. (provided the o(a ) in the definition of no =

n0 (u,a) is uniform). On the other hand, P < al/4 +1/2 log a implies

nO - t > a/2 (for sufficiently large a and u K1); Stone's Theorem

implies that

sup P{S nCD = o(n- )
1:111 <B

so

sup sup sup max P{S oa+I iS =y} - O(a - ) . //

uK xcK2 y<x O<L<a log a

Theorem 2 is especially useful in studying large deviation

probabilities for hitting times. As an illustration, we present an
I

extension of Cram~r's classical estimates for the one-sided gambler's

ruin problem (cf. Feller [5 ]; also Siegmund [11]).

Let Xl,X2 ,... be i.i.d. random variables from a distribution

F with a finite Laplace transform in some interval: this distribu-

tion will be thought of as a member of an exponential family of

probability distributions (F 0 : O Jl, i.e.,

10
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(21) F (dx) -eOX)O F(dx)

-f(' e'x F(dx)

and J is the largest interval on which the Laplace transforme0 )

is finite. Denote by P1 and a 2 the mean and variance of F0, so

(22) li (d/dO)4*(e)

- (d /d8)()

Note that these simple relations imply that p t and that (O) t

on {O0i :J>01 j but on {e):+pon {0 = J

THE0RE( 3: Suppose F is a nonlattice distribution, and let T a

min{n :S > a). If 80>0, 6 cJ, and *p(0) > 0, then as a -

n

-Oa +[a/P IV p()
(23) P fh < a/ e (27ra)

0 a-a1O

-1 3/2 -p()-

Ie- P {S >x~d/0 T0)xES

if 0 Cj+ is in the interior of J, and if ip(O) < 0, then as a

(24) P 0{a/11, < -r <ao e Oa+I/P +1*()(21ra)

a- 1 3/2 ( -

e -e

0 e e P fS >x)dx/E S~

0110e

',' 'n. - . . . -



ItI

Note that 0 > 0, 0(0) > 0 implies V0 > 0, so the statement

(23) makes sense.

PROOF OF THEOREM 3: For 0 > 0, 0E J, 0(0) > 0,

-eS +T'(0)

P0ft< a/p }  e dP
fT c <a/p~~

-6a + E a/p0 ]()
--e

Sa/p e -e(ST-a)+(J- [ a/p 0 6) ( )

0 f e dP0 .J=0 {T-J} }

For a/p0 j - a1/3 < j < [a/p 0 6, the approximation

P {Sa -a<X =J}~ P fS >y}dy/E S

0 T 2a) c 0  e T0
P {T a= } ~ (21Ta) -;, (T- 1 113/2

hold uniformly by Theorem 2, so

L a/p0 ] -O(Sz - a)+(j-[ a/p 0 J)*(0)

E f e a dP0
J-[ a/p0 ]-al/3 fTa-j}

-l .3/2 O-x

(2a)- aI p0 3/ e P {S0 >x}dx/E S0

[a/p e ]/0 ] (J-[ a/pe J()

• Z e

J-[ a/p 0 ]-a 11 3

12



The last expression is a geometric series which converges to

(1 - e-() )-1 as a4 0 ,. Since

[a/ie ]-a1 /3  -8(S -a)+(J- a/ le J)p(e)
f e a dPj

J-0 [Tamj} }

< ea

is of smaller order of magnitude than a" , the proof of (23) is

complete.

The proof of (24) is quite similar, but a technical complica-
-e(ST-a)

tion arises: if e < 0 then e is an unbounded random variable.

We will not reproduce the details of the argument here (however, see

Example 1 of Section 2, where essentially the same problem of uni-

formity occurs); we have included Proposition 1 below to dispose of

uniform integrability difficulties which arise in the use of

Theorem 3. //

PROPOSITION 1: Suppose g(y) is a positive nondecreasing function on

[0,0), that F is a distribution on IR with finite mean It > 0, and

that

(25) f 0&[0,-) g(u)F(du+z)dz <

Let {T ie1, a CR be any family of stopping times for: a,i

o(L,...,Xn)) such that if T i n, then S < a < S
i n n=l,2,... ai n-l-- -n

Then

13



(26) sup sup EF g(ST -a) < co
icI aCIR F Ta,i

If F has a finite variance, then

(27) sup sup n EF ng(S -a); S <S_ < 0

n aCR F n

Other than the variables T = minn: S >a), many families of
a n

random times are subsumed by this proposition, for example

T - min{n:S >(2an) ) , a:>

The condition (25) is not difficult to verify, in many instances of

interest. If, for example, g(y) - e0 , 0 > 0, and

(28) f g(y)F(dy) - f0 e y F(dy) <

then

(29) fo &c[0,o) g(u)F(du+y)dy

0 CE[0,. ) e0(U+Y) F(du +y)e -0 y dy
0

fi e -0 y dy :cOoo) e F(du)

< 0o

PROOF OF PROPOSITION 1: Let

(30) G(z) - 4C(O.) g(u)F(du+z)

for z > 0; since g is nondecreasing, C +. Let

14



(31) UMI r pi P{ k C I )
k-O

by the renewal theorem there is a constant C such that

(32) U(I) < C <

for every interval I of length 1. But

(33) EF g(ST  -a)
a,i

o

- f 0 g(u)F(du+z) Z P(T >k, S ca-dz)
0 0 k-O a,i k

C,,

< E G(k+l)U(a-k-1, a-k]
k-O

< E G(k+l) C
k-O

by (25).

If F has a finite variance, then by either Stone's Theorem or

the Local Limit Theorem for lattice distributions there is a constant

C < such that for every interval J of length 1,

sup n PFS c < C
n

Hence

15



(34) EF [g(S -a); Sn <a<S n ]

< E G(k)P Fk<a-S <k+l}
- k-0 F - n-i-k-O

A
0o

< n C Z G(k) . //
k=0

In deriving the analogue of Theorem 2 for lattice random walks

Stone's Theorem may be replaced by the more well-known local limit

theorem for lattice distributions. Although the argument is the

same, the result is quite different.

Let {S ) be a random walk with increments {X.} i.i.d. from F,n i

which has mean p > 0 and variance 2< -. Suppose F is supported by

the coset h + 3 , where 0 < h < 1 is either zero or irrational; and

suppose there is no integer k > 1 such that h + kZ supports F. Let

(35) a - min{n > I S >a)a - n

T = min{n > : S >0)

THEOREM 2 If

(36) no W n0 (u,a) - ap- I + uj P-3/2 a1/2 + o(a
1/2)

and if h -0, then for x F(1,2 .... ,

(37) P{Ta n O ; ST -ax- (a-La [ )
a

- -u 2/2 a - 3/2 (27ta) -1/2 P(ST >XJ/EST

16



and

2 13/2 -1/2
(38) P T 0 no~ e-U/2 - 3 (27Ta)-

as a . If h # 0, then for xcfl,2,... I

(39) P{Ta=n0; ST -a-x - (a-n0h- E a - n0h)
a

- e-U/2 U 3/2 (27ra)-1/2 (EST) -I

P{ST>x- (a-n0ha- [ n h a)1 -1

and

(40) Ptfa = nO }  e-U/2 n-i 3/2 (2wa)-1/2 (EST)-1

F PfST>x- (a-n 0h-[a-n 0 hJ)1
x-1

as a . These relations ((37)-(40)) hold uniformly for u in any

compact subset of IR, provided the o(a ) term in the definition of

n0 is uniform.

The surprise is (40): for although (Ta - a-l)a-1 P3/2 a-1/2

is (asymptotically) normally distributed, the (asymptotic) density of

T is not the discretized normal density. However, one may easilya

deduce the global limit theorem from (40) by appealing to Weyl's

equidistribution theorem of number theory (see, for example,

Chandrasekharan [ 4 ]).

Now suppose that in addition to having support contained in

h + 7 (and in no coarser lattice) F has a Laplace transform which is

17
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finite in some open interval J containing zero. As before, let

F (dx) = e ( F(dx)

e ( 0) f eOx F(dx)

x F e (dx)

22

O= 2 (x- o)2 Fo(dx)

J+ = {0Oj J:lO>0} .

THEOREM 3 Suppose h 0. If 0 > 0, O J, and i(O) > 0, then as

a "+ through Z

-Oa + a/A "],e) -1/2
(41) P0{Ta <a }  e (2a)

-1 3/2 4(a))-100 e ( -e

. e 0  p{ST >x}/E S

If 8 cJ+ is interior to J and (O) < 0, then as a -0

-6a + [a/j o + lj*(e)
(42) P0 (a/vi 0 < T a < o ~ e • (2ra)f 1 /2

a-l11 +3/2 ~ ()-• oI a 12 (l-e ()) -

oo -Ox

* . e P(ST>Xl/EsST

18
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Suppose h 0 0. If 6 > 0, OCJ, and *(8) > 0, then as a

through IR,

-Ga + [ a/li0 J@,(0) (2rf

(43) PO{ a <apo e -e " (2a)-1/2

-1 /2/Es
(a e / Eo T

Ia/l e  =
P . P{S T>x (a -jh- [a- jh j))

* exp{-O[x- (a-jh- [a-jh ]

+ (j - E a/ )W() .

If 0 J+ is interior to J and (0) <0, then as a - O through R.,

-Ga + [ a/ie +l t(e)i

(44) P (a/O < Ta < ~ e (2ra)-1/2

-1 3/2
(a0- ) /E ST

• Z P {S >x- (a -jh - [a-jh )
J=[ a/1] 1 X1

* exp{- O[x- (a-Jh-Ila-jh 1))

+ (j -[ali ]),(e) .

Although the series in (43) and (44) have a somewhat menacing

aspect, they are "subgeometric": to obtain reasonable approximations

one would need only a small number of terms.

19
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2. Perturbed Renewal Processes

In recent years an extension of the renewal theory for random

walks to a class of "perturbed" random walks has been effected

(principally by M. Woodroofe [14]) and T. L. Lai and D. Siegmund

([7], [8])); the germination of this new theory was triggered by the

peculiar needs of sequential analysis. It is the object of this sec-

tion to derive analogues of Theorem 2 appropriate for the more gen-

eral setting of Lai and Siegmund's papers.

Let {X i } be ild from a nonlattice distribution F with mean

p > 0, variance 2 , and finite third moment, and Sn = X +X

(the need for a third moment stems from the necessity of appealing to

certain refinements of the Central Limit Theorem). Let

(45) Zn = Sn + &n

T = T a - min{n :Z >a}a n

here {&n} is a sequence of random variables such that En is indepen-

dent of the future G(Xn+ 1,Xn+2 '... ). Certain assumptions on the

rate of growth and oscillation of the sequence (En} are necessary to

obtain any results of a renewal-theoretic character: those that fol-

low are of necessity more stringent than those of Lai and Siegmund,

since more refined limit theorems are at stake.

ASSUMPTIONS ON {&n}. There exist constants ne(0,1/4), $c[0,1), y > 0

such that for every E > 0

20
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i A. P{I max Inl > rps-lUl-8-Y)} =o(r
- I /4 + n/2 )

0<n<r

B. P{ max ln >rl/2 + T E} = o(r1/4 +T/2)

Br<n<r

1/41). / -1/2C. P{flr ] >rII4 + r]/  El = o(r-  )
r

D. P{ max r - r+kI >E} = o(r -
/2)

l<k<r l +r I

Roughly speaking, (A) and (B) guarantee that Ta is not very

much smaller than its expectation with any appreciable probability

(see Lemma 3); (C) insures that the normal approximation to the dis-

tribution of Z is sufficiently sharp; and (D) implies that the pro-m

cess {Z ) acts like a random walk for reasonable stretches of time.
n

Not all interesting processes are ruled out by these assumptions, as

the next result shows.

PROPOSITION 2. Suppose Sn = Y1 + ... +Yn is a p-dimensional random

walk whose increments [Y i are iid from a distribution with mean

vector p and finite absolute 2k-th moment, for some i > 2. Let [a n
-- n

be a sequence of constants for which max n 3/4 an+kl -0, and letk<n 3 /

g :]Rp -I R be a function which is C3 in a neighborhood of W and

satisfies

(46) max jg(x)l = O(R
xl<R

as R . If
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Zn = ng(Sn/n) + a

and

Cn -- Zn - ng (p) - <Sn -nji )

then {n satisfies Assumptions (A)-(D), for any qe(0,i/16) and

ae(0,i).

PROOF. The appropriate tool is S. Nagaev's generalization of

Chebyshev's inequality (this is Corollary 2 of [10], a paper which

contains a wealth of information concerning the accuracy of the nor-

mal approximation, including an improvement of the Berry-Esseen

Theorem which will be used later in this section). Nagaev's

Inequality states that if V1,V2, ... are iid random variables with

zero mean and if W = V +... +V , then

(47) P{Wn >x} <Bm EIV1l m n/x m

for all x > 4{n max(O,log(nm/2 -1 /Km EIV 1I I'))} 1/2 where

(m+2) -MK 1 i + (m+l) em

and B is an absolute constant depending only on m. Using (47)m

(with m=3) in conjunction with Taylor's Theorem, one may easily show

that {E } satisfies Assumption (C).

Assumption (D) is somewhat stickier. Nagaev's Inequality

shows that for each 6 > 0,
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-1/2(48) P max ISn- np I >n6} - o(r-  )
ar<n<r

and on the complementary event

(49) l- nk< 1 (2n)- n nj 1 2 g) - ni)

- (2(n+k)) - 1 (S+-(n+k) PI gV 2 SP)Sn -(n+k)>l

+ tn{IS n/n-p 13 + IS n+k/(n +k) _ 1 13)

+ o(l)

for some constant a > 0 (this follows from Taylor's Theorem and the

fact that the sequence {a } is slowly varying). The cubic term fallsn

easily to (47) (with m- 4 ), and

(50) I(2n)-l<S n- iV 2 g(P) IS n -n>

- (2(n+k)-'<Sn+k-(n+k)p1 2 g() iSn+k - (n+k)J>l

< 1[(2n)-1-(2(n+k))--l n- 1

The first and third terms may be easily disposed of by using (47)

(m14); (47) also works on the second term, but only after a maximal

inequality has been employed. The proper maximal inequality may be
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stated as follows: if UI,U2, ... are ild random variables with mean

zero and finite variance, then there is a c > 0 such that for all

E > 0,

P{ max (UI +...+Uk) > E} < cP{(U1 + . . . +U n) >E}
l<k<n

Assumptions (A) and (B) are relatively easy to verify, using

the standard maximal inequality for L2 reverse martingales, and

Taylor's Theorem. For (A) some caution is necessary since for n

small, P{IS n-nji >n6} need not be small; this is the reason for the

2k-th moment condition and the growth condition on g. Because the

details of the verification are somewhat mundane, they are omitted.

The main result of this section is that the "local" renewal

theorem generalizes to perturbed random walks.

THEOREM 4. Suppose the sequence {n} satisfies Assumptions 1 and 2,

and that Zn - Sn + E n where {Sn } is a random walk from a nonlattice

distribution with mean P > 0, variance a 2, and finite absolute third

moment. Let

(51) no  n0(ua) - au-I + uOp-3/2 a1/2 + o(a1/2

Then

(52) P{T a,-n ~ -u 2/2 0 - I 3/2 (27a)-i/2
a 0

and
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(53) P{T - n0 ; ZTa<x}

2
eu /2 a-1 3/2 (21 a 2 f0 P{S >yldy/ES

as a . These relations are valid uniformly for u eKI, x cK

where K1 is a compact subset of m and K2 c (0,-), 0 1 K provided
1/ 22

the o(a / 2 ) term in the definition of n0 is uniform.

One could attempt to prove Theorem 4 by following the pattern

established in the proof of Theorem 2; however, many of the technical

details can be sidestepped by incorporating the result of Theorem 2

into the proof. This is accomplished by first conditioning on

(54) A G(Xl' .... 9X i' .... n
n n n(1 .. ,

where
-_ al/2 +I -

nI  n1 (a) =[aj -a 1

Because of Assumptions (A) and (B), Ta > nl(a) with preponderant

probability (cf. Lemma 3 to follow); on the other hand, Assumption

(D) guarantees that max <n<no Rn -n 1 1is small, so conditional on

, T is nearly always the same as nI + min{n>l :S >a-Z 1}, andn-i a - n n

zT - a is approximately ST - (a - n). Thus Theorem 2 should allow

for calculation of

(55) P{Ta n0 ; ZT - a<xa 'n .

The remainder of the proof will consist of integrating out

the conditional probability over the a-algebra 3n , i.e., evaluating

25
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E[P{T a-no; ZT a <xI 1)

The conditional probability (55) is of appreciable size only when Z

is in a certain interval whose length is roughly proportional to

a 1 +rI2 (which is in turn proportional to the standard deviation of

S -S ). On this interval S has (approximately) a density which
n 0  n I n I

is (approximately) a constant multiple of Lebesgue measure (by

Stone's Local Limit Theorem ; Assumption (C) insures that integrating

out against S is not markedly different from integrating out against

Z ).

The strategy of the proof is indicated schematically by

Figure Al.

LEMMA 3. Suppose {Zn}, n, and { n satisfy the conditions of

Theorem 4. Let E > 0, b > 0 be fixed real numbers, and suppose J isa

any interval satisfying

(56)< ba/4 +r/2

and

(57) (a-x) > E a 1/ 2 +

where

X a sup{x : xCJ aa a

Then

(58) P{Ta <nl; Zn1 CJ a o(al/ 4 +n/2

26



n n0

Figure Al
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as a - Co. This holds uniformly for the family {Ja } of all intervals

satisfying (56) and (57).

PROOF. This is essentially the same as the proof of Lemma 2: the

perturbation terms {f n are the only complicating factor.

Let

I+ A{y IR :dist (y,I) < 6}

for each interval I cAR, and let r1, r r be the events
1'2' 3

1 max n < a(l- -y))
i O<n<8n1ln

r2 = max nh ! 1/2 +T j 2
r max it < a 2+f /21

2 an, n n

r3 = <al/4 +T/2,

Then by assumptions (A)-(C) on fn

p{ \(FI or2 0r3)} = o(a-l/4 +n/2)
-1

since nI , n1 (a) - ap . Now

{Ta <nlI; znI eJa; r inr2 nr 3

C{ mn S -S < < Ea I 2 +f/ 2 /2 + a/4 + 9/ 2
8 1 n<n l n
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sn a (J) l/4 +n/2
1 +a

U { max S >a(O+y); S C(J) "
O<n< n n/4+/2

--n1

The probabilities of the two events on the RHS of this last relation

may be bounded using the Strong Law, Chebyshev's Inequality, and

Stone's Theorem, in much the same fashion as in the proof of

Lemma 2. //

Lemma 3 will justify conditioning on 3n, effectively allow-
nl

ing us to replace Ta by min{n >nI :Zn >a}. This was the first step

in the strategy; the second was to integrate out over 5n. The next
n.

lemma provides a device for doing so. Recall that

n0(ua) =ap-1 + al/2a -3/2 u + o(a I/ 2)

nI(a) = aif -a1 / 2 +n3

define

= 1 / 2 +n a 1 / 2 0-3/21/

(59) k k(u,a) n0 (u,a) -nl(a) a a Oi u+o(a/2)

LEMMA 4. Let f :W. + IR be a bounded uniformly continuous function

such that too If(x) Idx<-. Let

(60) w(y) - [k-(a-y) - 1 ] l k 1 / 2

let A < B be any two real numbers (finite); and let {c), {B be

sequences of constants converging to zero. Then if [Sn}, { n } , and

SZn } satisfy the hypotheses of Theorem 4,

29



(61) J+f (w(y))P{Z n dyl
w(y) -A-cx 1

nii

B[ f(2)d /2 p1/2 kl/2 (2 1a)-1/2 o-1

~A

as a -b . This holds uniformly for u in a bounded subset of IR,

provided the o(a1/2) term in the definition of nO(u,a) is uniform.

PROOF. This is a consequence of Stone's Local Limit Theorem for the

random walk {S n}, together with Assumption (C). Let i(.) be the

modulus of continuity of f, i.e.,

T(6M) - sup If(u) - f(v) ,

u,v: Iu-v L_6

and let r6 be the event

r - jn<6 k1 /2

Now

Z n -  [f(o)-(6)j P fS c dy; r6}

y)-Aan+6  n1

< + n c dy 6

< (y)-A+ f(W(y)) P {Zn edy; r6)

_<(y)in -6 [f(W) +IP(6) ] P Sn cdy; 6)

By assumption (C), P{fl\r 6 = o(a - 1/4 +n/2); since f is bounded,
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LB46 6 /2
n [f(C) -4(6)] P {Sn C dyl + o(a1/4

(y) -A+t +1
13

< Bnl f (w(y)) P {Z ncdy}

L(y) =A+ani

B +6 -1-6- 1 / 4 + n/
< [f((y)) -(6)] P {Sn Edy} + o(a-  +2)

fW(y)-A4Q -61
n 1

The integrals on the extreme sides of the last inequality may be

approximated using Stone's Theorem. Since 6 > 0 was arbitrary, (61)

follows: the uniformity in u follows directly from the statement of

Stone's Theorem. ///

Recall that the strategy for evaluating P{T =n O(ua);

ZT -a<x} called for a careful analysis of

P{Ta n0 (u,a); ZT-a<x; Ta>nI(a); Zn c I(a,u)i

where I(a,u) is some "critical interval" (see Figure 1). Implemen-

tation of this strategy requires that we bound P(T-n 0 ; ZT - a < x;

Z n l(a,u)}; since there is no local limit theorem (or Berry Esseen

bound) available (a priori) for the process {Z ), this is a somewhatn

delicate point.

LEMHA 5. Suppose the processes {Sn} n 1, and {Z) satisfy the

hypotheses of Theorem 4. Then for bounded sets KcIR, and each

B > 4 + b,
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(62) sue b  Sup
I: I uEK

a1 / 2 PZ no-nO C I; 1Z n -n )PjI >a1/4+/2 B}

-3
<C(_ ,m 3 ) E (2 +b)[y(B+2j(b+I)) +(B-4 +j(b+2))- 3

J-0

+ a1/ 2 pf I >al/4 +n/2 I

+ a 1 / 2 Pf{' - nl>1

where

(x) e-X 2/2 /a /T

Here C(w,o,m3) is a constant depending only on the first three

moments of SI, and the supremum is over real intervals I. In addi-

tion there are constants Cb,K (depending on b,K and un the processes

isn, 1 n such that

(63) sup Sup Sup a1/2 Pz -nO P i1) < C*

sup b,Ka<- uEg 1:111<b 0o-C,

and for each B < there is a constant C such that
B,K

12 p



(64) lim sup sup sup
a- uCK I: I I[6

aI/2 P{Z n-n 0 PCI; IZ -Z n (n0 n1 )p _<a1/4+nl/2 B;
1 0

I~nI _< s 
1 / 4 +n/12;]nnl<}

<B,K" 6

for sufficiently small 6 > 0.

NOTE: The notation SUPuEK may be somewhat confusing, since u does

not explicitly appear in any of the expressions. However, recall

that n0 is defined as an integer such that

n0 (u,a) - ap- I + a1/2 a
- 3/ 2 . u + o(a1

/2)

Implicit in the inequalities (59)-(61) is the assumption that the

o(a /2) term is uniform for uCK.

The proof of the lemma will rely on a strengthening of the

Berry-Esseen Theorem due to Nagaev [101.

NAGAEV'S NORMAL APPROXIMATION THEOREM. Let U Y + ... +Y wheren 1n

Y'' ... are i.i.d. random variables with mean zero, variance 1, and

finite absolute third moment m3 . Then

jp{u n<, 1/2 owl <Lm3n-/2(l +

for every nc1I and xcmR. L is a universal con.;tant.
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PROOF OF LE(A 4. Let

I - {y c IR: dist (y,I) < }

k = O - nI
= a /2 + T) +o -3/2 a1/2 + 1a/2)

k no -n 1  a + u011 a + o(a )

Then )

(65) P{Zn- n0 PC I; IZ n Zn -k l >kI /2 B; I I <kI 2 [ n t nI_
00 1 1 0 1

< P{Sno0 n0P+ tn +is n -Sn ISno-Snl-k >k 1 12 ;B1 n In <k1 /2

=fP{Sk - kvJ 1+l-y; ISk- kjl > k2B-l}

.P{Sn + -nl1 cdy; KItn <kl/2}

E~ P {B - I +2j (b+l) < IS k - k v lk
- I / 2 < B - I + 2(j+l) (b+l)}

J -0

P{S n np1 ek
1 /2 J(J,I)}

where for each J, J(J,I) is the union of two intervals whose lengths

do not exceed 4(b +1). By the (usual) Berry-Esseen Theorem there is

a constant C (0,m3) such that

P{Sl-n lickl1/2 J) < (k12 /n2 )(IJI + *)C*(a,m

for all intervals J and all a > 0 (and uniformly for u CK, since

k - k(ua) t uniformly as a t -). The probabilities
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P{B - 1+2j(b +1)< IS k - k V k - 1 / 2 < B - 1 + 2 ( j +1) (b +1))

may now be estimated using Nagaev's Theorem to complete the proof of

(62): again, the fact that uEcK (bounded) implies that k = k(u,a) t-

uniformly for u eK, so the bound provided by Nagaev's Theorem is

uniform in u.

By Assumptions (C) and ,D) on the process n

a 1/2 pf nl >a1/4 +T/21 0

ao / 2  1 >1} - 0

Thus in view of (62) it suffices to show that P{Z -n0 P EI;

z no-Zn -Iki <k1 /2 B; N} = O(a- /2 ) in order to prove (63): here
0 1

r = {I <a1 / 4 +I/2} n { -In E <1}. Now

(66) P{Z no 0 n 0  I ; -Z -kj <k 1 / 2 B;1F}

P{S -n 0 P+ Cn S+l i n 0-Sn I-kij<k1/2 B+1
< P Sn k - c1+1l; Is -n-kjiI<k /2B+l;1 }

= f P{Sk-k SI+l-y; ISk-klI<k/B+l}

P{S + nn1 n- nidy; r}

By the Berry-Esseen Theorem there is a constant C such that
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(67) P{Sk kii 1 +l-yj < C*(III +2)k - 1/ 2

P{Sn +E n pkl1/2 j;n<...IJ+ ) 1/2 / 1/2

n n 1

for all intervals I and J (on r, I /k1/2j <1); furthermore,

{y : I+,-y f [-k B- l,k B # 1 is an interval of length no

greater than 2kl/2 B +4 +II. Hence (63) follows from (66) and

(67). (Uniformity in u again follows from the fact that

k f k(u,a) t - uniformly, provided u eK bounded.)

The proof of (64) is quite similar. J//

PROOF OF THEOREM 4. Fix B > 0 and 6 > 0 (B should be thought of as

being quite large, so that the RHS of (62) is small, and 6 should be

thought of as small). Recall the notation

k ff k(u,a) nO(u,a) -nl(a) = a1/2 + 71 + a1/2 CT -3 /2 u+o(a1/2

and let

r= { l1 < 6k1/2
}

G6. max ln-E 6
=nl <n)1 6

Then

(68) P{T a -n 0; Z T -a<x }

a 0 - n n
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+ P{Z C(a,a+x]; [Z -z -kiI >Bk I/ 2

no 0 1

+ P{r I

+ P{G}

According to assumptions (C) and (D), the last two probabilities are
o(a=1/2); and P{Z n0(a,a+x]; IZn - Zn-k1i I >Bk1/2 } will be small

in comparison to the first probability if B is large (cf. (62)).

Thus it is the first probability that is of primary interest.

Begin with the inequality

(a-klJ+Bk -x

(69) J +P{T =n 6 <Z -a<x;G Z =y; T>n r I
fy-a-kil-Bk +x a 0 T 6'l 6

. P{Zn E dy; T> n *r6}

< P{T =n 0 ; ZT - a<x; z n0-Z n-kill <Bkl; 1 r; G }

a- apB+

< }.a-kp+Bk x P{Ta =n0 ; 6<ZT-a<x;G6IZ y; T>nl;r 6 }

- y'a-kliBk _x a1o -

. P{Z n dy; T>n 1 ;r 6 }

+P{a <Z <a+6; jZ -Z -kil<Bkl/ 2 ; r 6 ; G6

It follows from (64) that if 6 > 0 is small, then P{a<Z <a +6;

1/2 0o-z n -kpl <Bk ; r 6 ; G61 is small compared to the integrals on

the extreme sides of the inequality (69) (recall that kI /2 al/4 +a /2
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and that u is restricted to the bounded set K). Thus the bulk of the

argument consists of approximating the integrals in (69).

Theorem 2 is the key to evaluating the conditional

probabilities: the reduction to the framework of an unperturbed

process is provided by the obvious inequalities

(70) P{Ta-y_6 =no-nlfk; ST-a+y+6 c(26,xl} 1{fr; Ta >fnl }

< P{T =n 0 ; 6 < ZT - a<x; G6 Zn= y; Ta >nl; r 6 }  1fF 6; T >n, }

< P {-a -n -n =k; S, -a+y < x+6) * 1{F6; T >n i l

where Tb  min{j >1 :S >b}. Since k -a1/2 +  t - Theorem 2 provides

asymptotic approximations to the probabilities on the extreme sides

of (70); moreover, since a-kp -Bk /2-x<y<a-kp+Bk /2+x, these

approximations are uniform on the range of integration. Thus for

large a,

(71) e-((y) 2202 (J(2k)-i/2[fx P{So >s}ds/ES -6 ]

1 l{r,; T>n1 }

< P{T af-n0 ; 
6 <ZT- a<x; G6 Z n =Y; Ta >n1 ; r"8

* 1fr; Ta >nI}

a 1

< e - W( y ) 2 / 2 c 2 0- 1P(27rk)-[/2[X + 6 P{S >s}ds/ES +6]
0 0T

l{r,; T >nil
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where

(72) W(y) = [k- (a-y)l-1]lk-

for all w W(y) such that we[-B-xk
-1 /2 , B+xkl/2.

Combining (69) and (71) gives

(73) JB-  xk -(Y)/2a P{Z n dy; r6 ; Ta >n1}jw(Y) k B+xkePn

(2rk)-1/2 -1 p " [ S >s0 ds/ES -6]>0

< P{Ta n0; ZT a<x; lZn -z n-k1i <Bk1/2 ; G r6}

" L(y._BBx k_ e -w(y)2/22a PZ nl cdy; r,; Ta >nI }

10y~w-1/2k -1

(27rk) - a/ 2 G-1 p fx+6 P(S >s}ds/ES +6]
f T0 T0

+ P{a <Z n0<a+6; Z n0-Zn I -kl <Bk1/2; r6 ; G61

Recall that P{r 6 o(a-i/2), and that

P{T >n; Z 1 -a+kj E [- Bkx/
2 x, Bkl/2+x]1}

w o(a-1/
4 +T1/2)

M o((k/a) 
1 /2)
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(by Lemma 3; note that for u cK bounded, k - k(u,a) al/ 2 +n

uniformly, so (57) holds). Consequently, the measures

P{Z edy; r,; Ta> nlI

may be replaced by P{Z n edy}. Lemma 4 now applies; thus

for large a

B W22 2123/2 1/2u /2 -1(74) B e- 2 0  d/(27r)1/2 a] 3(2ra) e-  a-

S[f P{S >s}ds/ES -26]

00 1
< P 2T no; ZTa <x; IZ2Z kPi <Bk1/2 G

< [fB e-o 2/2a2 dw/(20)1 /2 a] • 13/2(27a)-1/2 e-u 2 /2 G-1
- -B

[fX+ 6 P{S >s}ds/ES +261
0 T T

0 0

+ P{a<Z n<a +6; IZn -Zn -kpI<Bk 2  F6; G6}
n 0  n1  '6

Letting 6 4 0 and then B t - proves (53).

A careful examination of the argument will reveal that (53)

holds uniformly for u CK and x EK', where K is a bounded subset of IR

and K' is a compact subset of (0,0). The proof of (52) is all that

remains: it will be accomplished by the same device as the proof of

(9) in Theorem 2. Choose E > 0; let x be large enough that
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SP(So > y}dy/ES < E
r (T0 T0

CO

E PfXI>x+j-1)<E
J.0

For sufficiently large a,

P{T n 0; ZT -a <x }  - 2 /2 a 1  3/2(2)-/2
a 0-

[4fx P{S 0 >y~dy/ES 0 ±E],

and by (63) of Lemma 5

sup1 112al/2 P{Z 1 - (nO-) P c} < C2 K

provided u cK, a bounded subset of IR. By assumption (D),

1/2 >1} < EP rno -i

Since

P{Ta n O0 ; ZT - a >x)

< E PX 1 >x+j +l}P{a -2j>Z n>a -2j -2} + P{n 0- n0

it follows that

P{T -n O 1 eu 2/2 o -  P 3/2(2wa)- [/211 ±2E] -E(C2, +  ) a
- 1 / 2

a 0 3/ -1/ 2K /

uniformly for u CK. Since E > 0 was arbitrary, (52) follows. This

completes the proof of the Theorem. ///
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EXAMPLE. Suppose that Y1,Y are U E , and

2(75) T min{n :U >2anl
a n

Let t > 0 be fixed; if 0 > (2/t) then

(76) P {T>at} - (2a)- 1/2 -a[it1/2 r 12 (2t) 3 /2

fo e((2/t)/2)x P {U >x}dx/E U
(2t)-  0 (2t) 0

[ie( 2 )- -12- /2/2)1- 2

* exp{( at +1 '-at) - (p(2t) - 1 2 2 /2) }

as a -ca

The probability in (76) has some importance in statistics in

2that it is the Type II error probability for a "repeated X -test."

The approximation given above was obtained earlier by Siegmund [12]

in a somewhat different form. Verifying that the two forms are

equivalent is a routine exercise in the use of Lemma 1.

PROOF OF (88). By the fundamental identity of sequential analysis,

(P-(2/t) 1/2)U T + T(t - 2/2)(77) Pp {T>at} - f e dP

fT>ate (2/t)

exp{ (i - (2/t) 1/ 2) (UT - (
2aT) 1/2)}{T>at}

exp{T((l/t)-(U2/2))+(2aT) l/2(-(2/t) 1/2))dP (2/t)
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Now fT >at) - {at <T<at +a I 3 } U {at +a' 3 <T}. We will proceed by

evaluating the integral on the event fat <T <at +al/3i, and then

showing that the integral on fat +a 1 /3 <T} is of smaller order of

magnitude.

On fat <T<at+al/3},

I(2aT)1/2 - a(2t) I/2 - (T- at) (2t)-1/21 < C a- '/ 3

for some constant C not depending on a. Thus

(78) t a exp{()i-(2/t) 1/2) (T - (2aT)1/2)}
fat<T<at+a

I1/3 }T

exp{T((1/t) - /2)) +(2aT)i/2 - (2/ 2

dP
(2/t)

1/3[at+a I 3  
1/21/

E f exp f(11 - (2/t) 1 2 (UT - (2aT)
I/ )

n-Eat+l 2 {T-n}

-1/2 2
exp{(T - at) (11(2t) -p /2)}

expf-a[jt1/2 _ v] 2/2}dP

1/3Next we deduce from Theorem 5 that for at < n < at + a

(79) P {T-n; UT -(2aT)
I / 2 < x}(2/t) -T

-/2 -2 (2t)-1 / 2 fx P U >Y

(27a) 0 (2(2t) -

dy/E (2 0_ 2 U 0
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The relevant nonliniear process in this problem is

z - U 2/2n

- (nit) + (U n- n(2/t) 12)(2/0 1/2

1/2 2
+ (U~ -n(2/t) )/2n

with

1/2 -1/

C (U -n(2/0 l2)/2nn n

That the conditions of Theorem 5 are satisfied follows from

Proposition 2, so

(80) P (2t) Tin; Z T a <x}

-(21ra) -12t -2(2t0 -12 P {S > yldy/E S
0 (2/t) T 0  (2/0 To

-(27ra) (2 (/)1 2 t 2(2t 1 /2 x p 12/) >{(/t

*dy/E A (2/t) 1/2 U~
(2t) 0

But

ZT - U2 /2T - aT T

*(U T -(2aT) 1/2)(UT /2T +(a/2T) 
1 /2
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for at < T < at + a 1 3 , l(aI2T) 1 2 - (2t)-12, < (2a2/3 t2) - , and

furthermore for any E > 0, p > 0, P ( {IUT/2T-(2t)-1/21 >E -
(2/t)

o(a- p) (by any one of a host of large deviation theorems). Therefore

(79) follows from (80).

Proposition 1 implies that the family of random variables

-(U-(2aTa) /2)

- jaI/2 e aIT -n >atIJa

is uniformly integrable with respect to any of the measures Pq,

n > 0. Consequently, we may sum the geometric series in (78) to

obtain

(81) f exp{(p -(2/t)l12)M -(aT)1/2
{at<T<at+a 1/3 )

exp{T((i/t) - 2/2)) +(2aT)1/2(j- (2/t) 1/2

" dP(2/t)

~ exp{-a(Vt1/2
_ v ]2/2)(27a)- 1/2 t-2 (2t)

- 1/2

e (2t) 0 >x}

dx/E U (1 -e(u(2t) -/2 p22) -l

(2t) 0

* exp{(Eat +1 ] -at)(p(2t)-1/2 p2/2))

To see that 1/3 is of smaller order of magnitude,
(at+a < T}

note that for n > at + a 1/3 the sequence
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n((1/t) -(02 /2)) +(2an)1/2(p -(2/t) 1/ 2  is decreasing in n. Thus

f /3 < exp{-(a+a 1/t)[pt1 / 2 _ r212 /2)
{at+a 3 <TI -

. E ( exp{(p-(2/t) 1/2 MUT  (2aT) 1/2
(2/t) )tTI

Proposition 1 guarantees that E(t exp{(w -(2/t) 2)(U T -(2aT) )

is bounded as a + -. This completes the proof of (76). ///

There is a useful generalization of Theorem 4 for vector-

valued random walks. Let Yl,Y 2 ,... be i.i.d. random vectors in IR
d

from a distribution with mean vector p and covariance matrix I, and

let Un YI +"" + Y n Suppose { n} is a sequence of random variables

such that for each n, En is independent of the future

0(Yn+l, Yn+2,'" ). Define

(82) Z -GU +(1) +  o > 0
n n no

T-T min{n >I : Z >a}a - n

(here y(i) denotes the i-th coordinate of the vector y).

THEORE .Suppose p) = E1 > O, y1 has a (marginal) non-

lattice distribution, and Y has a finite absolute fourth moment. If

the sequence f& n satisfies assumptions (A)-(D), then

(83) P(T a-n 0 (u,a); ZT - a<x; T-1/2 (UT-T ) A}

SC(Au)(1))3/2 a 1/2 a-1/2 x P{S >slds/ES
T0

and
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(84) P{T -n (u,a); T_ 12(U -T A) C(A,u)(p(1)) 3/2  1/2 a-/2
a 0 T I

where

_d22 2 (2) d(d)

(85) C(A,u) - (2n)-d2 •e Iy  dy ... dy
{yCA;y(1 )'.u}

S a U
n n

To = min{n>l :S >0}0 n

no W nO(u,a) =ao- 1(1)1 -I uG 1I/2 (W )1 3/ 2 al/2

+ o(a 
/2)

Here A is any bounded polyhedron in IRd for which C(A,u) 0 0.

Relations (83) and (84) hold uniformly for x bounded away from zero,

and u in any bounded set K c IR such that

inf C(A,u) > 0

ucK

Note that the hypotheses do not require the vector Y to have

a nonlattice distribution in the usual sense: only the first coordi-

nate yl need be nonlattice.

The proof of the theorem is quite similar to that of

Theorem 4. The necessary modifications are really very minor.

First, since Y has a finite absolute fourth moment, the sequence

{n-1 /2(U -nvn)) satisfies assumption (D) for every T c (0,1/4) (i.e.,

Pt max In-l1/2 (Un-n) - (n+k) -1/2 (Un- (n+k)w) > " o(r 1/ 2)
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for every E > 0); consequently

P{T =n; ZTa<x; T-I/2(UTT ) A}

n-1/2(
Pa n0; ZT-a<x; n 1  (U n P) cA)

1 l/T21+n

where nI = ap - I - a1 / 2 +Jj as before. The latter probability may

be evaluated by conditioning on J and proceeding as in the preced-n
I1

ing theorem, with one change: namely, Lemma 4 must be altered to

allow evaluation of

EB+ y n-1/2Uny 1^+ f(w(y))P Z nl E dy; 1 1/ Un -nl 1) c A)

n1 1

This is very easily accomplished by using the full force of Stone's

multidimensional local limit theorem (Theorem 1 of [131), and gives

the result

y)l f(Wi(y))P{Zn c dy; n 1l 2 (U -n ) c A}

to,(y) -Ma 11nI

C(Au)(k/a) /2(p(1)/Y)i/2 AB f( )dc

The rest of the argument is the same. //

The lattice cases are not nearly so pleasant. Even global

limit theorems for the joint distribution of T and ZT -a reflect the

dependence of the random walk (S } and the perturbation terms n
n n

(cf. [91); local theorems will reflect it even more clearly.
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1d

Let YI,Y2,... be i.i.d. random vectors in IRd from a dis-

tribution with mean vector p and covariance matrix $, and let

Id
U = Y1 +... +Y . Let Q : d IR be a quadratic form, i.e.,n 1 " n

T
(86) Q(x) x Mx

for some symmetric matrix M; let {n I be a sequence of random vari-

ables satisfying Assumptions (A)-(D) such that each n is independent

of the future C(Yn+l''" ), and such that for each E>0

(87) P{En I >E} = o(n -

and let {a ) be a sequence of constants satisfying
n

max l n - a n+k 0 . Define

(88) Z = U 1  + Q (U -np)n-1/2 + E + a
n n n n n

T = T = min{n >l : Z >a}
a - n

and let r be a constant, 0 < r < 1. Denote by a2 the variance of

y(l) (thus a2 

THEOREM 6. Suppose P(1) =Eyl) > 0 , Y(1) has an arithmetic distribu-
1 10

tion of span 1 (i.e, P{Y c I = 1), and Y has a finite absolute

fourth moment. Let f :[0,-) + IR be a bounded continuous function.

Then as a through r + a

4 A
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(89) a1/2 Ef(ZT -a)l{T a  n0; (UT -T)T-1/2 cA)
a

(0 (1)) 3/2 (27)-d/2 (det $)-1/2 (EU(1) )-
T 0

y lOE 
f(j +[(Q(y) +a -r)mod 11){Y..,(1)ua~y, iA =0 no0

* > j +1

Se- y Ts-Iy 2 dy(2) ... dy(d ) -0

for

(90) no = n0(u,a) = a(P(i
1 )-  - u&-(1 0(1) )3/2 + o(aI/2

To = min{n >l :UM > 0)
_ n

and A any bounded polyhedron in IRd . If instead of being arithmetic

yl) is supported by the lattice h + I for some irrational h c(0,1),

then as a through r + 2,
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(1 a1/2 TI)-1/2(91) a Ef(ZT -a)1{T =n (U - T)T A)
Ta 0' Tia

_ ( (1))3/2(2Tr)-d/2(det $)-1/2(EU(1))-
T 0

Ey(1 )= yA L f(j + [Q(y) +a +n 0 h-r]mod 1){Y fyy -uc; ycA} -0 0o

* ) > j + [Q(y) +a +n 0 h-rmod 11]

* eyT - yT/ 2 dy ( 2 ) ... dy(d) 0

The relations (89) and (91) are valid uniformly for u in any bounded

subset of IR.

The proof of Theorem 6 will be omitted.
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3. Remarks

Professor Siegmund has pointed out that the various local

theorems derived in sections 1 and 2 may be used to obtain large

deviations theorems of the Bahadur-Ranga Rao type (cf. [21) for

stopped sums, provided the increments have finite two-sided Laplace

transform. For example, precise asymptotic expressions for

P{S T -Ta (EXI ) >ET a }
a

and

PS T -Ta (EXI) >ET}
a

where

T = min{n :S X 1 + . . . +X >a}
a n 1n

and

T - min{n :S >,2a(c+n))a n

are available for Xi } i.i.d. n(11,1), exponential, uniform (0,I),

etc., for all E > 0. The derivations are so simple that they are

left for the amusement of the reader.

The primary impetus for this work was a desire to obtain

asymptotic approximations for the Type II error probabilities of

repeated significance tests in multiparameter exponential families.

These results (which use Theorems 5 and 6) will appear elsewhere.
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